Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Sci Rep ; 14(1): 8198, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589526

RESUMO

The knowledge of geomorphodynamic aspects is crucial for understanding marine and coastal processes/dynamics as well as for characterizing coastal environments heavily affected by anthropogenic activities. To provide a framework of analysis that can be applied in a consistent way for the geo-environmental characterization of highly contaminated coastal sites, in this paper a set of operational guidelines is proposed. Special attention is given to the role of geomorphological-based surveys and analyses in defining (i) the site-specific geological model of the investigated site, (ii) the anthropogenic impacts on marine and coastal sediments, (iii) the expected morphodynamic variations induced by climate change and anthropogenic interventions, (iv) tailored dissemination activities and community engagement plans. Then, an evaluation of the state of the art of activities already performed for the characterization of the coastal contaminated sites located in the Apulia region (southern Italy) is provided. The outcomes of this research are also provided in the form of infographics to favor their dissemination among communities and stakeholders.

2.
Glob Chang Biol ; 30(4): e17267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563471

RESUMO

Lakes, as integral social-ecological systems, are hotspots for exploring climatic and anthropogenic impacts, with crucial pathways revealed by continuous sediment records. However, the response of multi-proxies in large shallow lakes to typical abrupt events and sustained drivers since the Anthropocene remains unclear. Here, we explored the driver-identification relationships between multi-proxy peaks and natural and anthropogenic events as well as the attribution of short-term perturbations and long-term pressures. To this end, sediment core records, socio-ecological data, and documented events from official records were integrated into a large shallow lake (Dongting Lake, China). Significant causal cascades and path effects (goodness-of-fit: 0.488; total effect: -1.10; p < .001) were observed among catchment environmental proxies, lake biogenic proxies, and mixed-source proxies. The peak-event identification rate (PEIR) and event-peak driving rate were proposed, and values of 28.57%-46.43% and 50%-81.25% were obtained, respectively. The incomplete accuracy of depicting event perturbations using sediment proxies was caused by various information filters both inside and outside the lake. PEIRs for compound events were 1.41 (±0.72) and 1.09 (±0.46) times greater than those for anthropogenic-dominated and natural-dominated events, respectively. Furthermore, socio-economic activity, hydrologic dynamics, land-use changes, and agriculture exerted significant and persistent pressures, cumulatively contributing 55.3%-80.9% to alterations in sediment proxies. Relatively synergistic or antagonistic trends in temporal contributions of these forces were observed after 2000, which were primarily attributed to the "Grain for Green" project and the Three Gorges Dam. This study represents one of the few investigations to distinguish the driver-response relationship of multiple proxies in large shallow lakes under typical event perturbations and long-term sustained pressures since the Anthropocene. The findings will help policymakers and managers address ecological perturbations triggered by climate change and human activities over long-term periods.


Assuntos
Sedimentos Geológicos , Lagos , Humanos , Ecossistema , China , Agricultura , Monitoramento Ambiental
3.
Sci Total Environ ; 927: 172235, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582125

RESUMO

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.

4.
Sci Total Environ ; 923: 171345, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447711

RESUMO

Recent studies have highlighted the presence of antibiotic resistance genes (ARGs) in Antarctica, which are typically indicative of human activity. However, these studies have concentrated in the Antarctic Peninsula region, and relatively less is known about ARG prevalence in East Antarctica, where human activity levels are lower compared to the Antarctic Peninsula. In addition, the mechanisms of ARG transmission to Antarctica through natural or anthropogenic pathways remain unclear. In this study, we analyzed the fecal samples of Adélie penguins and South polar skuas by using high-throughput sequencing and microfluidic quantitative PCR to detect potential pathogens and ARGs at their breeding colonies near Syowa Station in East Antarctica. These results revealed the presence of several potential pathogens in the fecal matter of both bird species. However, the HF183 marker, which indicates human fecal contamination, was absent in all samples, as well as seawater sampled near the breeding colonies. This suggests that the human fecal contamination was negligible in our study area. In addition to pathogens, we found a significant number of ARGs and metal resistance genes in the feces of both Adélie penguins and South polar skuas, with higher detection rates in skuas than in penguins. To better understand how these birds acquire and transmit these genes, we analyzed the migratory patterns of Adélie penguins and South polar skuas by geolocator tracking. We found that the skuas migrate to the tropical and subtropical regions of the Indian Ocean during the austral winter. On the other hand, Adélie penguins exhibited a more localized migration pattern, mainly staying within Antarctic waters. Because the Indian Ocean is considered one of the major reservoirs of ARGs, South polar skuas might be exposed to ARGs during their winter migration and transfer these genes to Antarctica.


Assuntos
Charadriiformes , Spheniscidae , Animais , Humanos , Regiões Antárticas , Spheniscidae/genética , Estações do Ano , Fezes
5.
Proc Biol Sci ; 291(2018): 20232705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444334

RESUMO

The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth's energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth's energy budget, human disturbances and degree of generalism.


Assuntos
Haemosporida , Especificidade de Hospedeiro , Humanos , Animais , Filogenia , Efeitos Antropogênicos , Aves
6.
Mar Environ Res ; 196: 106415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395681

RESUMO

Environmental DNA (eDNA) techniques are emerging as promising tools for monitoring marine communities. However, they have not been applied to study the integrated effects of anthropogenic pressures on marine biodiversity. This study examined the relationships between demersal community species composition, key environmental features, and anthropogenic impacts such as fishing effort and seafloor litter using eDNA data in the central Tyrrhenian Sea. The results indicated that both fishing effort and seafloor litter influenced species composition and diversity. The adaptive traits of marine species played a critical role in their response to debris accumulation and fishing. Mobile species appeared to use relocation strategies, while sessile species showed flexibility in the face of disturbance. Epibiotic species relied on passive transport. The use of eDNA-based methods is a valuable resource for monitoring anthropogenic impacts during scientific surveys, enhancing our ability to monitor marine ecosystems and more effectively assess the effects of pollution.


Assuntos
DNA Ambiental , Ecossistema , Código de Barras de DNA Taxonômico/métodos , Biodiversidade , Poluição Ambiental , Monitoramento Ambiental/métodos
7.
J Toxicol Environ Health A ; 87(8): 342-356, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38310537

RESUMO

The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.


Assuntos
Poluentes Químicos da Água , Zinco , Humanos , Animais , Zinco/farmacologia , Zinco/toxicidade , Alumínio/farmacologia , Larva , Anuros/fisiologia , Metais , Sistema Imunitário/química , Tamanho Corporal , Aumento de Peso , Poluentes Químicos da Água/toxicidade
8.
Mar Pollut Bull ; 201: 116127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412794

RESUMO

This study makes a descriptive analysis of necropsied sea turtles registered in the Biota Conservation Institute database between May 2018 and May 2022 on the coast of Alagoas, Brazil. During this period, 79 animals of four species were necropsied: 87.4 % (69) Chelonia mydas, 6.3 % (5) Caretta caretta, 3.8 % (3) Lepidochelys olivacea and 2.5 % (2) Eretmochelys imbricata. C. mydas was the most frequent species, mainly juvenile females. In 29.1 % (23/79) evidence of anthropogenic interactions was found (e.g., fishing net marks, plastic waste in the digestive tract, trauma from collisions with boats). Cutaneous tumors suggestive of fibropapillomatosis in 35.4 % (28/79), in C. mydas and E. imbricata, half were in an area of high eutrophication, close to the capital. Endoparasites were found in 46.8 % (37/79) individuals. Information on strandings in the region is essential for understanding the use of the area and the impacts to which these animals are exposed.


Assuntos
Tartarugas , Humanos , Animais , Feminino , Brasil
9.
Environ Sci Pollut Res Int ; 31(6): 9732-9744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196038

RESUMO

Functional trait measures have the potential to represent local habitat conditions and are considered promising tools for biomonitoring and bioassessment programs. Macroinvertebrates are an ecologically significant group in freshwater ecosystems and possess a range of functional traits which are employed to assess ecological quality. Nevertheless, the relationships between macroinvertebrate functional structure and anthropogenic disturbances remain poorly understood. In this study, we conducted a comparison of how functional trait-based and taxonomy-based composition of macroinvertebrate assemblages responded to eutrophication in Lake Taihu, a typical large eutrophic freshwater lake in China. Specifically, we examined both the taxonomy-based and trait-based compositions of benthic macroinvertebrates varied along the eutrophication gradient. Eutrophication was associated with remarkable decreases in the abundance of gastropod taxa and increases in Oligochaeta and Chironomidae. Ten categories belonging to six traits were significantly different among three site groups. The eutrophic and transition sites showed higher abundance of Size2, burrowers, and integument-respiration organisms than macrophytic sites, whereas abundance of Size1, conical-shaped, sprawlers, scrapers, and lung-respiration were higher in macrophytic sites. Both taxonomic (36.8%) and functional compositions (39.8%) of macroinvertebrate assemblages were influenced by the same variables: CODMn and transparency. Our study showed that macroinvertebrate trait-based approaches can be considered a useful supplement to traditional taxonomic approach for biomonitoring programs in freshwater lakes.


Assuntos
Invertebrados , Lagos , Animais , Invertebrados/fisiologia , Lagos/química , Ecossistema , Eutrofização , Monitoramento Biológico , Monitoramento Ambiental
10.
Sci Total Environ ; 920: 169753, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38181953

RESUMO

Inshore marine habitats experience considerable anthropogenic pressure, as this is where many adverse effects of human activities concentrate. In the rapidly-changing seascape of the Anthropocene, Hong Kong waters at the heart of world's fastest developing coastal region can serve as a preview-window into coastal seas of the future, with ever-growing anthropogenic footprint. Here, we quantify how large-scale coastal infrastructure projects can affect obligatory inshore cetaceans, bringing about population-level consequences that may compromise their long-term demographic viability. As a case in point, we look at the construction of world's longest sea crossing system and broad-scale demographic, social and spatial responses it has caused in a shallow-water delphinid, the Indo-Pacific humpback dolphin (Sousa chinensis). Soon after the infrastructure project began, dolphins markedly altered their home range near construction sites such that these waters no longer functioned as dolphin core areas despite the apparent presence of prey, indicating that anthropogenic impacts outweighed foraging benefits. The contraction of key habitats has in turn led individuals to interact over spatially more constricted area, reshaping their group dynamics and social network. Although there was no apparent decline in dolphin numbers that could be detected with mark-recapture estimates, adult survival rates decreased drastically from 0.960 to 0.904, the lowest estimate for these animals anywhere across the region to date, notably below the previously estimated demographic threshold of their long-term persistence (0.955). It is apparent that during an advanced stage of this coastal infrastructure project, dolphins were under a major anthropogenic pressure that, if sustained, could be detrimental to their long-term persistence as a viable demographic unit. As effective conservation of species and habitats depends on informed management decisions, this study offers a valuable lesson in environmental risk assessment, underscoring the implications of human-induced rapid environmental change on obligatory inshore delphinids-sentinels of coastal habitats that are increasingly degraded in fast-changing coastal seas.


Assuntos
Golfinhos , Animais , Humanos , Hong Kong , Cetáceos , Dinâmica Populacional , Comportamento de Retorno ao Território Vital , Ecossistema
11.
Mar Biol ; 171(2): 55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226137

RESUMO

Oxygen minimum zones in the open ocean are predicted to significantly increase in volume over the coming decades as a result of anthropogenic climatic warming. The resulting reduction in dissolved oxygen (DO) in the pelagic realm is likely to have detrimental impacts on water-breathing organisms, particularly those with higher metabolic rates, such as billfish, tunas, and sharks. However, little is known about how free-living fish respond to low DO environments, and therefore, the effect increasing OMZs will have cannot be predicted reliably. Here, we compare the responses of two active predators (bigeye tuna Thunnus obesus and yellowfin tuna Thunnus albacares) to DO at depth throughout the eastern Pacific Ocean. Using time-series data from 267 tagged tunas (59,910 days) and 3D maps of modelled DO, we find that yellowfin tuna respond to low DO at depth by spending more time in shallower, more oxygenated waters. By contrast, bigeye tuna, which forage at deeper depths well below the thermocline, show fewer changes in their use of the water column. However, we find that bigeye tuna increased the frequency of brief upward vertical excursions they performed by four times when DO at depth was lower, but with no concomitant significant difference in temperature, suggesting that this behaviour is driven in part by the need to re-oxygenate following time spent in hypoxic waters. These findings suggest that increasing OMZs will impact the behaviour of these commercially important species, and it is therefore likely that other water-breathing predators with higher metabolic rates will face similar pressures. A more comprehensive understanding of the effect of shoaling OMZs on pelagic fish vertical habitat use, which may increase their vulnerability to surface fisheries, will be important to obtain if these effects are to be mitigated by future management actions. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04366-2.

12.
Environ Sci Technol ; 58(1): 780-794, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38118133

RESUMO

Assessing the impacts of cumulative anthropogenic disturbances on estuarine ecosystem health is challenging. Using spatially distributed sediments from the Pearl River Estuary (PRE) in southern China, which are significantly influenced by anthropogenic activities, we demonstrated that metagenomics-based surveillance of benthic microbial communities is a robust approach to assess anthropogenic impacts on estuarine benthic ecosystems. Correlational and threshold analyses between microbial compositions and environmental conditions indicated that anthropogenic disturbances in the PRE sediments drove the taxonomic and functional variations in the benthic microbial communities. An ecological community threshold of anthropogenic disturbances was identified, which delineated the PRE sediments into two groups (H and L) with distinct taxa and functional traits. Group H, located nearshore and subjected to a higher level of anthropogenic disturbances, was enriched with pollutant degraders, putative human pathogens, fecal pollution indicators, and functional traits related to stress tolerance. In contrast, Group L, located offshore and subjected to a lower level of anthropogenic disturbances, was enriched with halotolerant and oligotrophic taxa and functional traits related to growth and resource acquisition. The machine learning random forest model identified a number of taxonomic and functional indicators that could differentiate PRE sediments between Groups H and L. The identified ecological community threshold and microbial indicators highlight the utility of metagenomics-based microbial surveillance in assessing the adverse impacts of anthropogenic disturbances in estuarine sediments, which can assist environmental management to better protect ecosystem health.


Assuntos
Ecossistema , Microbiota , Humanos , Efeitos Antropogênicos , Sedimentos Geológicos/análise , Biota , Rios , Estuários , Monitoramento Ambiental
13.
Environ Pollut ; 344: 123237, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159625

RESUMO

Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.


Assuntos
Microplásticos , Qualidade da Água , Humanos , Plásticos , Areia , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220361, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899013

RESUMO

Resource exchanges in the form of invertebrate fluxes are a key component of aquatic-terrestrial habitat coupling, but this interface is susceptible to human activities, including the imposition of artificial light at night. To better understand the effects of spectral composition of light-emitting diodes (LEDs)-a technology that is rapidly supplanting other lighting types-on emergent aquatic insects and terrestrial insects, we experimentally added LED fixtures that emit different light spectra to the littoral zone and adjacent riparian habitat of a pond. We installed four replicate LED treatments of different wavelengths (410, 530 and 630 nm), neutral white (4000 k) and a dark control, and sampled invertebrates in both terrestrial and over-water littoral traps. Invertebrate communities differed among light treatments and between habitats, as did total insect biomass and mean individual insect size. Proportional allochthonous biomass was greater in the riparian habitat and among some light treatments, demonstrating an asymmetrical effect of differently coloured LEDs on aquatic-terrestrial resource exchanges. Overall, our findings demonstrate that variation in wavelength from LEDs may impact the flux of resources between systems, as well as the communities of insects that are attracted to particular spectra of LED lighting, with probable implications for consumers. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Invertebrados , Animais , Humanos , Biomassa , Insetos , Água , Cadeia Alimentar
15.
PeerJ ; 11: e16085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780372

RESUMO

Background: Biodiversity conservation is becoming challenging day by day. For this, it is essential to understand the distribution, habitat, and impact of anthropogenic activities on animals at risk. We assessed the suitable habitats and anthropogenic impacts on Asiatic black bears, common leopards, musk deer, and snow leopards in and outside the protected areas of Gandaki Province, Nepal. Methods: We collected the presence locations of Asiatic black bears, common leopards, musk deer, and snow leopards based on scats and other signs. We employed the Maximum Entropy (MaxEnt) tool to identify suitable habitats of our studied species and their anthropogenic impacts on them. Results: The total suitable habitat of the common leopard was found to be 6,052 km2, followed by the Asiatic black bear (5,819 km2), snow leopard (4,447 km2), and musk deer (1,690 km2) in Gandaki Province. Most of the areas of suitable habitat for common leopards and Asiatic black bears were outside the protected areas, and for musk deer and snow leopards were inside the protected areas. Elevation was the most important variable determining habitat suitability of Asiatic black bear, common leopard, and musk deer, whereas the distance to water was the most important variable determining habitat suitability of snow leopard. Asiatic black bears, common leopards, and musk deer face significant anthropogenic impacts, but snow leopards face some anthropogenic impacts. Conclusion: Managing these animals' habitats inside and outside protected areas is essential. Hence, biodiversity conservation and livelihood opportunities should be balanced in the Himalayas on a win-win basis.


Assuntos
Cervos , Panthera , Ursidae , Animais , Espécies em Perigo de Extinção , Conservação dos Recursos Naturais , Ecossistema , Ruminantes
16.
J Environ Manage ; 345: 118923, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688969

RESUMO

Quantifying the demographic impact of anthropogenic fatalities on animal populations is a key component of wildlife conservation. However, such quantification remains rare in environmental impact assessments (EIA) of large-infrastructure projects, partly because of the complexity of implementing demographic models. Providing user-friendly demographic tools is thus an important step to fill this gap. We developed an application called EolPop to run demographic simulations and assess population-level impacts of fatalities. This tool, freely available online, is easy to use and requires minimal input data from the user. As an output, it provides an estimate, with associated uncertainty, of the relative deficit in population size at a given time horizon. Because this impact metric is relative to a baseline scenario without fatalities, it is robust to uncertainties. We showcase the tool using examples on two species that are affected by collisions with wind turbines: Lesser kestrel (Falco naumanni) and Eurasian skylark (Alauda arvensis). After 30 years, the kestrel's population is expected to suffer a deficit of ca. 48%. In contrast, the impact on skylarks, which are already declining in France, is estimated to be fairly low (ca. 7%). EolPop aims at providing a robust quantification of the relative impact of fatalities. This tool was originally built for windfarm EIA, with a focus on birds, but it can be used to assess the demographic consequences of any type of fatalities on any species.


Assuntos
Animais Selvagens , Aves , Animais , França , Densidade Demográfica , Incerteza
17.
Mar Pollut Bull ; 194(Pt A): 115407, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37611337

RESUMO

Marine mammals are considered sentinel species and may act as indicators of ocean health. Plastic residues are widely distributed in the oceans and are recognised as hazardous contaminants, and once ingested can cause several adverse effects on wildlife. This study aimed to identify and characterise plastic ingestion in the Guiana dolphins (Sotalia guianensis) from the Southwestern Tropical Atlantic by evaluating the stomach contents of stranded individuals through KOH digestion and identification of subsample of particles by LDIR Chemical Imaging System. Most of the individuals were contaminated, and the most common polymers identified were PU, PET and EVA. Microplastics were more prevalent than larger plastic particles (meso- and macroplastics). Smaller particles were detected during the rainy seasons. Moreover, there was a positive correlation between the stomach content mass and the number of microplastics, suggesting contamination through trophic transfer.


Assuntos
Caniformia , Golfinhos , Animais , Plásticos , Microplásticos , Cetáceos , Polímeros
18.
Environ Sci Pollut Res Int ; 30(45): 100731-100742, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639101

RESUMO

The major ion chemistry in the Taihu watershed has dramatically changed due to human disturbances; however, little is known about the similarities and differences in the responses of the inflow rivers and Taihu lake to the disturbances. Using historical (1950s-1970s) and recent (2018-2021) water chemistry data of inflow rivers and the lake, as well as socioeconomic and land use data, we explored the drivers for the major ion chemistry change and different responses of the inflow rivers and the receiving lake. The results indicated that, compared with 1950s-1970s, all the major ions and TDS in rivers and Taihu lake significantly increased (by 91% for Mg2+ and by 395% for Cl- in rivers; by 68% for HCO3- and 134% for Na+ in the lake); however, their increases in major ion composition presented a clear difference, i.e., although current dominant cation remained Ca in inflow rivers, the second dominant cation has shifted from Mg2+ (1950s-1970s) to Na+ (2018-2021) for rivers, while for the lake, the second dominant cation has become frequently Na+ (2018-2021), followed by Ca2+, indicating a clear salinization tendency. Furthermore, the change of some indicative ratio indices of inflow rivers and the lake in the past decades presented an apparent difference, i.e., the river systems had a higher increase rate in Ca2+/Mg2+ and SO42-/Cl- than the lake, while the lake had a higher increase in (Ca2+ + Mg2+)/HCO3-, TH/TA, and Cl-/Na+ than the river systems. Analyses indicated that increased human disturbances were the major driver for the similar increase in the TDS and major ions for both river systems and the lake, while the different algal biomass in the rivers and lake, the land use change, and declined hydrological connectivity in this watershed played important roles in the different alterations of the water chemistry indices. Comparison of major ion correlation change between the running and stagnant waters indicated a clear "lacunification" trend of inflow rivers in terms of water chemistry characteristics in this dense river-network region. Our work revealed the cause and effect of the fundamental water chemistry change in a rapid development region and will provide scientific basis for the integrated management and recovery in the watershed.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Lagos/química , Rios , Água , Poluentes Químicos da Água/análise , Cátions , China , Monitoramento Ambiental/métodos
19.
Environ Sci Pollut Res Int ; 30(39): 91440-91452, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37479936

RESUMO

Microplastic pollution in aquatic environments has been a ubiquitous concern in recent years, owing to their rapid production combined with poor waste management practices. However, information on freshwater microplastics in the Global South is still scarce, despite growing research on freshwater microplastics in recent years, particularly within the Global North. To help address this knowledge gap, we studied water and sediment microplastic dynamics along a subtropical river system, i.e. Crocodile River around the Nelspruit City area (South Africa), across three different seasons (i.e. cool-dry, hot-dry, hot-wet) using a combination of diversity indices and multivariate analyses. Microplastics were more abundant during the cool-dry season in the surface water samples (mean 1058 particles m-3) and high during the hot-dry season (mean 568 particles kg-1 dwt) in the sediment samples. The hot-wet season had a low particle density in both surface water (mean 625 particles m-3) and sediments (mean 86 particles kg-1 dwt) samples. Microplastic shapes were dominated by fibres and fragments, with the colour scheme dominated by transparent, blue, and black. The abundance of microplastics was positively correlated with pH and resistivity, and negatively with river flow. Wastewater was attributed as a primary source of microplastics, particularly because of the observed dominant fibre microplastics, usually released during laundry. Our results suggest that Crocodile River and its tributaries are temporary sinks of microplastics during periods of low rainfall. Implications of this pollution are far-reaching, including effects on residents who are dependent on the Crocodile River as a source of drinking water and aquatic biota which may be exposed to these pollutants.


Assuntos
Rios , Água , Microplásticos , Plásticos , Água Doce
20.
Mar Pollut Bull ; 193: 115199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356130

RESUMO

Sediment pollution in coastal and marine environments has emerged as a pressing concern due to its far-reaching ecological, environmental, and human health impacts. This Special Issue of the Marine Pollution Bulletin assembles a diverse range of studies investigating sediment pollution, its causes, and potential mitigation strategies, covering topics such as geophysical assessment of anthropogenic activities, biological responses to pollution, contamination, and ecological risk assessments, and microplastics in coastal sediments. The findings emphasize the need for effective monitoring, management, and interdisciplinary research to address the multifaceted challenges posed by sediment pollution. As the global population grows and human activities expand, it is essential to prioritize sustainable practices and policies to minimize anthropogenic impacts on coastal and marine ecosystems. By advancing collective knowledge and sharing best practices, we can work towards ensuring a healthier and more resilient future for these crucial ecosystems and the lives they support.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Poluição Química da Água , Sedimentos Geológicos/química , Poluição Química da Água/estatística & dados numéricos , Água do Mar/química , Microplásticos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...